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Abstract—A single machine scheduling problem with a given partial order of jobs is considered.
There are subsets of jobs called courses. It is necessary to schedule jobs in such a way that the
total weighted duration of all courses is minimal. We consider the case when the initial job and
the final one of each course are uniquely determined. The NP-hardness of the problem under
consideration is proved. We propose an algorithm for solving the problem, the complexity of
which depends polynomially on the total number of jobs, but exponentially on the number of
courses, which makes it possible to use it efficiently with a fixed small number of courses and
an arbitrary number of jobs.
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1. INTRODUCTION

We consider a set of jobs that need to be executed on one machine and a precedence graph that
sets a partial order of jobs. Some of the jobs are combined into subsets, which we will call courses.
It is necessary to build a schedule in which the total weighted duration of all courses is minimal.
The duration of a course is the length of the time interval between the start of processing the initial
job from this course and the end of processing its final one. The article considers the case when
the initial and the final jobs of each course are uniquely determined.

Single machine problems are comprehensively investigated in scheduling theory [1, 2]. At the
same time, the single machine problem of minimizing the weighted total duration of courses has
not been considered before.

The need to minimize the total duration of courses arises in different areas of production, edu-
cation and services. In [3], a resource-constrained project scheduling problem with such objective
function is considered in relation to constructing a schedule for preparing cosmonauts to work at the
International Space Station. It is necessary to minimize the length of each course (or an on-board
system in the terminology of the Gagarin Cosmonaut Training Centre). If too much time passes
from the beginning of a course to the exam, the cosmonauts’ skills are considered lost and they
have to add additional hours to the preparatory process, which leads to large time and financial
losses. In that publication, a heuristic algorithm for solving the problem is proposed.

We can also interpret such a problem as a problem of minimizing the total downtime of resources.
Suppose that all jobs of each course requires their own specific resource (for example, processing
on additional equipment). This resource is taken on a temporary lease, which begins to be paid
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MINIMIZING THE TOTAL WEIGHTED DURATION OF COURSES 1129

simultaneously with the start of the first job from the course and ends with the completion of the
last job from this course. Then the duration of a course can be associated with the total payment
for the resource, and the objective function characterizes the total payments for all leased resources.
In addition to payments for additional resources, this goal function can be considered as a fee for
storage and rental of premises.

For the first time, the question of the duration of courses was considered in [4]. Here, along with
the usual concept of “activity”, the concept of “hammock activity” is introduced. The duration of a
hammock activity is determined by the beginning and the end of some fixed activities. This article
discusses project scheduling without resource constraints and provides methods for calculating the
duration of hammock activities. Note that in the case when the first and the last jobs of a course
are uniquely defined, the concepts of hammock activity and course coincide.

The concept of hammock activity was developed in [5]. The authors of that article consider
the problem of minimizing the total cost of several hammock activities in a project both in the
presence of resource constraints (Resource-Constrained Hammock Cost Problem, RCHCP) and
without them. The cost of a hammock activity means its weighted duration. In the absence of
resource constraints, the problem is reduced to a linear programming problem. In case of resource
constraints, the formulation of the problem in the form of a mixed integer linear programming
problem is proposed. In the dissertation [6] the research of the RCHCP is continued. The au-
thor suggests metaheuristics for solving this problem, and also provides an extensive review of
publications on problems of the RCHCP type.

Some studies use terms other than “hammock activity” to describe a similar objective function.
So in theory of scheduling repetitive jobs (see, for example, [7]), such problems are known as project
scheduling problems with work continuity constraints. For example, in [8] the following project
scheduling problem with repetitive jobs is considered. There is some basic precedence graph, which
is duplicated k times. Some of the repetitive jobs requires additional resources (equipment, teams
of workers, etc.), and it is necessary to complete the project by the specified directive deadline
with minimizing the duration of these repetitive jobs. Examples of practical applications are
given for construction of multi-storey buildings, where identical jobs are performed on each storey,
construction of bridges, roads, etc. In [9] the terms used are “minimizing crew idle time” and
“minimizing resource idle time”. The authors describe a practical use of algorithms developed for
such a problem during the construction of the Westerschelde Tunnel in the Netherlands. Crews
of workers and freezing machines were selected as resources whose total duration of use had to be
minimized.

Thus, if we talk about minimizing the total duration of courses, the major attention in the
literature is paid to project scheduling problems either with or without resource constraints. In the
first case, we have to deal with an NP-hard problem [5] and the emphasis in such studies is on the
development of heuristic algorithms, whereas in the second case polynomial algorithms are built.

Our article discusses a single machine problem that can be interpreted as a project scheduling
problem with single resource available in the amount of one unit at any given time, provided
that each job also requires one unit of the resource. It is shown that this problem is NP-hard.
We propose an algorithm which allows to find an exact solution in the case of a large number
of jobs, but a small fixed number of courses. Section 2 provides a formulation of the problem.
Section 3 proves NP-hardness of the problem under consideration, as well as some of its properties.
Section 4 is devoted to solving an auxiliary problem, and in section 5 an algorithm for solving the
original problem based on solving an auxiliary problem is described and the results of a numerical
experiment are presented.
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2. PROBLEM STATEMENT

There is a set of jobs I = {1, . . . , n} that need to be executed on one machine. For each job
i ∈ I, its processing time is equal to pi > 0. All jobs are available at zero time. The processing of
any job cannot be interrupted.

A directed acyclic precedence graph G(I,E) is given, where I is a set of vertices, and E is a
set of arcs. We say that for a pair of jobs i, j ∈ I, job i precedes job j, denoting by i → j, if there
exists a directed path from vertex i to vertex j in the graph G(I,E). Denote by A(i) the set of all
jobs preceding job i and by D(i) the set of jobs preceded by job i. Each job i must be executed
after all jobs from set A(i) and before all jobs from D(i).

In addition, there are sets Ik ⊂ I, |Ik| > 1, k ∈ {1, . . . ,K}, called courses. Figure 1 gives an
example of a precedence graph for a problem with three courses. Each course Ik, k ∈ {1, . . . ,K},
has its own weight wk > 0. Depending on the interpretation, the weight is either a price of a leased
resource per unit of time or an index of importance (significance) of the course. For each job i ∈ I,
a schedule π determines its processing sequence number on the machine, which we will denote
by π(i), a start time of processing Si(π) and a completion time of processing Ci(π) = Si(π) + pi.
We will call a schedule feasible if it does not contradict the precedence relations of jobs and the
machine does not serve more than one job at any given time. The problem of minimizing the total
weighted duration of all courses implies minimizing the following objective function:

H(π) =
K∑
k=1

wk

(
max
i ∈ Ik

Ci(π)− min
i ∈ Ik

Si(π)

)
. (1)

The article considers the case when the first and the last jobs of each course are uniquely
determined, i.e. the following assumption is true.

Assumption 1. For each course Ik, k ∈ {1, . . . ,K}, there are jobs iak and idk, such that iak ∈ A(j)
for any j ∈ Ik \ {iak} and idk ∈ D(j) for any j ∈ Ik \ {idk}.
This condition is often fulfilled in practice. For example, in an educational process, the first lesson
is usually introductory, and the last one implies a general knowledge test, while the sequence of

– a job of course 1, – a job of course 2, – a job of course 3,

– a job which is not included in any course.

Fig. 1. A precedence graph and courses.
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other classes in the course may vary. In this case, the objective function can be written as

H(π) =
K∑
k=1

wk

(
Cid

k
(π)− Siak

(π)
)
=

K∑
k=1

wk

(
Cid

k
(π)−Ciak

(π) + piak

)
. (2)

We will call iak and idk extreme jobs (vertices) of course k, k ∈ {1, . . . ,K}. The set of all extreme
jobs of courses is denoted by Iad, and their number—by e. Since some jobs from Iad can be extreme
in several courses, e � 2K.

The minimization of function (2) exactly coincides with the minimization of the hammock ac-
tivities cost described in the introduction. In the standard scheduling theory notation [10] this
problem can be classified as 1|prec|H, where 1 means one machine, prec—the presence of prece-
dence constraints, and H—the objective function (2).

3. PROBLEM PROPERTIES

Remark 1. Since all jobs in problem 1|prec|H are available at the same time and downtime does
not improve the value of the objective function, we can only consider schedules without breaks
between jobs, with the start of the first job at zero time. Indeed, let there exist an optimal
schedule π1, in which there are machine downtimes or the first job does not start at zero time.
Then we can consider the schedule π2, in which all jobs are performed in the same order as in π1,
but the first job starts from zero time and there are no breaks between jobs. Schedule π2 is also
optimal.

Let’s show that even with the same processing time of all jobs, the problem under consideration
is NP-hard.

Theorem 1. Problem 1|prec, pi = 1|H is strongly NP-hard.

Proof. Let’s consider the classical single machine problem of minimizing the weighted total flow
time 1|prec, pi = 1|∑wiCi. The problem is formulated as follows. One machine and a set of jobs
I ′ = {1, . . . , n′} are given, each job i has weight w′

i and processing time p′i = 1, i ∈ {1, . . . , n′}. Let
there also be given a directed precedence graph G′(I ′, E′). It is necessary to find a schedule π′ that
minimizes the objective function

∑n′
i=1w

′
cC

′
i(π

′), where C ′
i(π

′) is the completion time of the ith job
in the schedule π′.

This problem is strongly NP-hard [11]. Let’s reduce it to the following problem 1|prec, pi = 1|H.
There is a set of jobs I = {1, . . . , n}, n = 2n′. Each job i has processing time pi = 1. Graph G(I,E)
has the following structure. There are |E′| arcs defined by the following rule: if in graph G′(I ′, E′)
there is an arc (j, k), then in graph G(I,E) there is also arc (j, k). In addition, there are n′−1 arcs
of the form (i, i + 1) for i ∈ {n′ + 1, . . . , 2n′ − 1} and |L| arcs of the form (2n′, l), where L is the
set of root vertices (sources) in graph G′, l ∈ L. The structure of graph G(I,E) is shown in Fig. 2.

Fig. 2. The structure of graph G(I, E) from the proof of theorem 1.
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Let’s set the courses as follows: jobs n′ + 1 and 1 belong to the first course, which has weight
w′
1, jobs n

′ + 2 and 2 belong to the second course, which has weight w′
2, . . . , jobs 2n

′ and n′ refer
to the n′th course, which has weight w′

n′ , i.e. each course consists of two jobs, the first of which
lies in set {n′ + 1, . . . , 2n′}, and the final—in set I ′. Let π be an arbitrary optimal schedule for this
problem. The value of the objective function is

H(π) =
n′∑
i=1

w′
i (Ci(π)−Ci+n′(π) + 1) =

n′∑
i=1

w′
iCi(π)−

n′∑
i=1

w′
iCi+n′(π) +

n′∑
i=1

w′
i. (3)

Due to the structure of the precedence graph, job n′ + 1 will be processed first. Then taking
into account Remark 1 we have Cn′+1(π) = 1. Since there are arcs (i, i+ 1) in the graph G for
i ∈ {n′ + 1, . . . , 2n′ − 1}, and all jobs from {1, . . . , n′} are processed after job 2n′, the order of jobs
n′ + 2, . . . , 2n′ is known, moreover,

Ci(π) = i− n′, i ∈ {n′ + 2, . . . , 2n′}, (4)

that is, all these jobs are processed one after another without breaks. Thus, in schedule π, the
execution of jobs n′ + 1, . . . , 2n′ is predetermined and will end at time n′. But then, taking into
account (3), schedule π is optimal if and only if (4) is executed and the minimum of the function∑n′

i=1 w
′
iCi(π) is reached with schedule π, i.e. when in the schedule π jobs 1, . . . , n′ are executed

starting from the moment n′ in a way minimizing their weighted total flow time. As a result,
the optimal schedule π′ in the problem 1|pres, pi = 1|∑wiCi can be obtained from the optimal
schedule π of the described problem 1|prec, pi = 1|H. Completion times of the jobs in the problem
1|prec, pi = 1|∑wiCi are as follows:

C ′
i(π

′) = Ci(π)− n′, i ∈ {1, . . . , n′}.

The theorem is proven.

Remark 2. Similarly, it is possible to prove NP-hardness in the strong sense of the one-machine
problem of minimizing the total (unweighted) duration of courses with different jobs processing
times, using a reduction from the NP-hard problem 1|prec|∑Ci to it.

As noted earlier, due to Remark 1 next, we will consider only schedules without breaks between
jobs, with the start of the first job at time zero. In this case, for each job j ∈ I its sequence
number π(j) in the schedule π uniquely sets the start time and the end of the job. Note also that
only completion times of extreme jobs of courses are included in the definition of the objective
function (2), moreover, only differences, and not absolute values, are decisive. Since in the absence
of breaks the duration of a course is determined by the jobs started after the first job of the course
and completed before the completion of the last job of the course, let’s rewrite objective function (2)
in a different form, without using the job completion times :

H(π) =
K∑
k=1

wk

⎛
⎜⎝ ∑

j:π(ia
k
)�π(j)�π(id

k
)

pj

⎞
⎟⎠ . (5)

Then we can write

H(π) =
n∑

j=1

Wj(π)pj , (6)

where

Wj(π) =
∑

k ∈ K:
π(j)�π(ia

k
)

wk −
∑

k ∈ K:
π(j)>π(id

k
)

wk. (7)
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So the contribution Wj(π) of each job j ∈ I to the objective function depends on the mutual order
of extreme jobs of courses and its place among the extreme jobs. In this regard, the following
idea of solving the problem arises: for each feasible permutation of extreme jobs of courses, it is
necessary to find an optimal order of jobs relative to the extreme jobs. The next section will present
a polynomial algorithm for constructing an optimal schedule for a given order of extreme jobs of
courses.

4. SOLVING AN AUXILIARY PROBLEM

As it was shown in the previous section, the value of the objective function of the initial prob-
lem depends on the mutual order of extreme jobs of courses. Denote by Λ = (λ1, . . . , λe) an ar-
bitrary permutation of extreme jobs that does not contradict the precedence relations given by
graph G(I,E), and introduce a directed acyclic graph G′(I,E′) such that E ⊂ E′ and for the set
of extreme jobs, the following condition is fulfilled:

λ1 → λ2 → . . . λe−1 → λe. (8)

The graph G′(I,E′) is obtained from G(I,E) by sequentially connecting extreme vertices λ1, . . . , λe

by arcs in accordance with the order given by Λ. If such order does not contradict the precedence
constraints of the problem, the resulting graph G′(I,E′) will be acyclic. Due to the acyclicity of
the original graph G(I,E), there is always at least one sequence of extreme jobs Λ that does not
contradict the precedence constraints. Then in any schedule π for the graph G′(I,E′) we will have

π(λ1) < π(λ2) < . . . < π(λe−1) < π(λe).

The problem is to minimize function (6)–(7) relative to the new graph G′(I,E′). We will denote
the auxiliary problem by PΛ.

For all jobs that are not extreme, it is necessary to determine their places in the sequence
λ1, λ2, . . . , λe. For each job, there are no more than e + 1 options (the job is processed before λ1,
between λ1 and λ2, etc.). Say that job j is placed in cell q, q ∈ {1, . . . , e− 1} if it is executed after
extreme job λq and before extreme job λq+1. Assume that q = 0 if job j is executed before λ1, and
q = e if j is executed after λe.

Consider for each extreme job λi ∈ Iad the sets A(λi) and D(λi) in the graph G′(I,E′). Note
several obvious statements that will be used later and the proof of which follows directly from (8).

Lemma 1. a) If j ∈ A(λi), then j ∈ A(λk) for all k � i.

b) If j ∈ D(λi), then j ∈ D(λk) for all k � i.

c) If j /∈ D(λi), then j /∈ D(λk) for all k � i.

d) If j /∈ A(λi), then j /∈ A(λk) for all k � i.

To determine boundaries of the possible location of the non-extreme jobs by cells in the row of
extreme jobs, we introduce the following notation:

q1(j) =

{
0, if j /∈ D(λ1),

max{g ∈ {1, . . . , e} | j ∈ D(λg)}, otherwise;

q2(j) =

{
e, if j /∈ A(λe),

min{g ∈ {1, . . . , e} | j ∈ A(λg)} − 1, otherwise.

Lemma 2. For each job j ∈ I \ Iad the inequality q1(j) � q2(j) is satisfied.

Proof. If either j /∈ D(λ1) or j /∈ A(λe), the statement is obvious. For a proof in the other cases,
we assume the opposite. Let q1(j) > q2(j). By definition of q1(j) we have j ∈ D(λq1(j)). On the
other hand, by definition of q2(j) we have j ∈ A(λq2(j)+1). But then by lemma 1 we get j ∈ A(λk)
for all k � q2(j) + 1, which means j ∈ A(λq1(j)). The resulting contradiction proves the lemma.
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Lemma 3. If in a feasible solution of problem Pλ job j is placed into cell q, then q1(j) � q � q2(j).

Proof. Assume the opposite. Let’s suppose that in some feasible schedule job j is placed into
cell q, for which either q < q1(j) or q > q2(j) is holds. Let q < q1(j). Then q1(j) > 0 and by
definition j ∈ D(λq1(j)), which means that job j cannot be executed before λq1(j), which contradicts
the choice of cell q. Let q > q2(j). Then q2(j) < e and by definition j ∈ A(λq2(j)+1), which means
that the job cannot be executed after λq2(j)+1, which contradicts the choice of cell q. The lemma
is proven.

For each cell q ∈ {0, . . . , e} let’s introduce its price f(q) according to the following rule:

f(q) =
∑

k ∈ K:
x(iak)�q

wk −
∑

k ∈ K:
x(idk)�q

wk,

where x(iak) and x(idk) are the numbers of extreme jobs of course k in permutation Λ = (λ1, . . . , λe).
This value determines the “contribution” of a job in the original objective function (6) if this job
is placed into cell q. Denote by q∗(j) the first number from q1(j) to q2(j) for which the minimum
of f is reached:

q∗(j) = min

{
t | f(t) = min

q1(j)�q�q2(j)
f(q)

}
. (9)

We will call q∗(j) the optimal cell for job j, j ∈ I. The following lemma shows that if one job
should precede another one in a schedule, then its optimal cell is not greater than the optimal cell
for another job.

Lemma 4. If j → g in graph G′(I,E′) for two non-extreme jobs j and g, then

a) q1(j) � q1(g);

b) q2(j) � q2(g);

c) q∗(j) � q∗(g).

Proof. a) Since j → g, then g ∈ D(j). If q1(j) = 0, then the statement is obvious. If q1(j) > 0,
then j ∈ D(λq1(j)). It means that g ∈ D(λq1(j)). Then by definition of q1(g) we get q1(g) � q1(j).

b) Since j → g, then j ∈ A(g). If q2(g) = e, then the statement is obvious. If q2(g) < e, then
g ∈ A(λq2(g)). It means that j ∈ A(λq2(g)). Then by definition of q2(j) we get q2(j) � q2(g).

c) Let q∗(j) > q∗(g). Taking into account a) and b), we obtain

q1(j) � q1(g) � q∗(g) < q∗(j) � q2(j) � q2(g).

This means that both cells q∗(j) and q∗(g) are available for jobs j and g. This contradicts cell
selection rule (9). Indeed, if f(q∗(j)) = f(q∗(g)), then cell q∗(g) should be selected for both jobs
as the earlier one. If f(q∗(j)) �= f(q∗(g)), then the cell with the minimum value of f should be
selected for both jobs. The lemma is proven.

For each cell q ∈ {0, . . . , e} we introduce a set of jobs Iq for which this cell is optimal:

Iq = {j ∈ I \ Iad : q∗(j) = q}, q ∈ {0, . . . , e}.

Let Eq ⊂ E be the set of arcs connecting the vertices of Iq, q ∈ {0, . . . , e}. Denote by π̄(Iq, Eq)
an arbitrary topological sorting of the graph Gq(Iq, Eq), i.e. some permutation of jobs from Iq
satisfying the partial order given by the set of arcs Eq. Due to acyclicity of the original graph
G(I,E), a topological sorting of any of its subgraphs Gq(Iq, Eq) exists. The following theorem
shows that, by ordering jobs in each cell separately, we can get an optimal schedule for problem PΛ

as follows: first we need to complete all jobs from set I0, then complete the extreme job λ1, then—all
jobs from set I1, the extreme job λ2, etc.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



MINIMIZING THE TOTAL WEIGHTED DURATION OF COURSES 1135

Theorem 2. The schedule πΛ = (π̄(I0, E0), λ1, π̄(I1, E1), λ2, . . . , λe, π̄(Ie, Ee)) is an optimal so-
lution of problem PΛ.

Proof. The schedule πΛ is feasible in problem PΛ. Indeed, consider any two jobs i, j ∈ I \ Iad
such that i → j. If these jobs are in the same cell, then the precedence constraint is satisfied due
to the construction of the topological sorting of all jobs from this cell. If i and j are in different
cells, then by virtue of lemma 4 we have q∗(i) < q∗(j), which means that in schedule πΛ job i will
be executed before job j. The precedence constraints between extreme jobs and all other jobs are
satisfied by virtue of the rule of constructing optimal cells.

The optimality of the solution follows from the definition of an optimal cell. Indeed,

∑
j ∈ I\Iad

f(q∗(j))pj =
∑

j ∈ I\Iad

min
q1(j)�q�q2(j)

⎛
⎜⎜⎜⎝ ∑

k ∈ K:
x(iak)�q

wk −
∑

k ∈ K:
x(idk)�q

wk

⎞
⎟⎟⎟⎠ pj = min

π

∑
j ∈ I\Iad

Wj(π)pj .

Since for the given order Λ, the contribution to the objective function of extreme jobs is fixed and
equal to

∑
j ∈ Iad

⎛
⎜⎜⎜⎝ ∑

k ∈ K:
x(j)�x(iak)

wk −
∑

k ∈ K:
x(j)>x(idk)

wk

⎞
⎟⎟⎟⎠ pj ,

this means that the schedule πΛ, which corresponds to the distribution of jobs across cells, delivers
the minimum of objective function (6)–(7). The theorem is proven.

Thus, solving problem PΛ can be reduced to calculating the optimal cell for each job and ordering
jobs in each cell separately. A general scheme of finding a solution to the auxiliary problem is
described by Algorithm 1. Let’s evaluate the complexity of this approach. It is necessary to
construct sets A(λ), D(λ) for each extreme job λ, which in total will require O(nK) operations.
Next, for each job j, it is necessary to define the boundaries q1(j), q2(j) and the optimal cell q∗(j)
that will required O(nK) operations. Building partial schedules in each cell needs no more than
O(n+ |E|) operations [12].

Algorithm 1 Procedure Solv(Λ)

1: πΛ := ()
2: for all q ∈ {0, 1, . . . , e} do
3: Iq := ∅
4: end for
5: Generate graph G′(I, E′) by permutation Λ = (λ1, . . . , λe)
6: for all j ∈ I \ Iad do
7: Calculate q∗(j)
8: Iq∗(j) := Iq∗(j) ∪ {j}
9: end for

10: Build π̄(I0, E0)
11: πΛ := π̄(I0, E0)
12: for all q ∈ {1, . . . , e} do
13: Build π̄(Iq , Eq)
14: πΛ := πΛ ∪ (λq, π̄(Iq, Eq))

15: end for
16: Return πΛ
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5. AN ALGORITHM FOR SOLVING PROBLEM 1|prec|H

Denote by B the set of all possible permutations of extreme jobs Λ that do not contradict
the precedence constraints of the original problem. If the number of courses in the problem is
small, or due to the structure of graph G(I,E), the mutual order of extreme jobs does not allow
a large number of options, an efficient search for a solution to the problem is possible. It is
based on iterating through permutations of extreme jobs and solving an auxiliary problem for each
permutation. Thus, the scheme of solving the problem can be represented as Algorithm 2, where
H∗

Λ is the optimal value of the objective function in the auxiliary problem PΛ, and H∗, π∗ are the
optimal value and optimal the schedule of the original problem 1|prec|H, respectively. Note that in
Algorithm 2 there is no need to find a schedule for each permutation Λ under consideration, since
to calculate the value of H∗

Λ, it is enough to know the optimal cells for each job.

Algorithm 2 Solving problem 1|prec|H
1: H∗ := +∞
2: for all Λ ∈ B do
3: Calculate H∗

Λ

4: if H∗
Λ < H∗ then

5: H∗ := H∗
Λ

6: Λ∗ := Λ
7: end if
8: end for
9: π∗ := Solv(Λ∗)

10: Return π∗

The algorithm for solving the problem has the complexity O(|B|(nK+ |E|)), where n is the total
number of jobs, K is the number of courses, |E| is the number of edges in the precedence graph
and |B| is the number of feasible permutations of the extreme jobs of the courses. The largest
contribution to the complexity is given by the value |B|. The maximum possible value of |B|
is (2K)!

2K
, when all possible permutations of extreme jobs of courses are considered without taking

into account their precedence relations. However, in the case of, for example, dense precedence
graphs, the value |B| may be acceptable for using Algorithm 2 even with a large number of courses.

During computational experiments, the proposed algorithm was compared with the optimization
solver IBM ILOG CPLEX 22.1.0.0 [13]. To apply this solver, the following formulation of the
problem was used in the form of an integer linear programming problem:

∑
k∈K

∑
j∈I,j �=ia

k

wkpjxiak,j +
∑
k∈K

∑
j∈I,j �=id

k

wkpjxj,id
k

+
∑
k∈K

(
pia

k
+ pid

k
−

∑
i∈I

pi

)
→ min,

xi,j + xj,i = 1 ∀i, j ∈ I;

xi,j + xj,k + xk,i � 1 ∀i, j, k ∈ I;

xi,j = 1 ∀(i, j) ∈ E;

xi,j ∈ {0, 1} ∀i, j ∈ I,

where variable xi,j , i �= j ∈ I, takes the value 1 if job i is executed before job j, and the value 0
otherwise. Such variables and constraints are standard for integer formulations of single machine
problems with precedence constraints (see, for example, [14]).
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Table 1. Test results for sparse graphs

n K |E| |B| Algorithm 2 CPLEX

100 3 481 6 0.007 13.218
5 467 4299 5.124 13.436
7 525 26 244 35.191 12.774

200 3 1864 6 0.034 106.282
5 1942 150 0.516 105.152
7 1990 870 3.169 102.967

300 3 4550 5 0.050 426.563
5 4423 10 0.069 404.386
7 4410 950 6.834 396.179

400 3 7765 1 0.022 >10 min
5 7662 4 0.051 >10 min
7 7746 280 3.362 >10 min

500 3 12 241 2 0.037 >10 min
5 12 118 2 0.065 >10 min
7 12 194 96 1.854 >10 min

Table 2. Test results for dense graphs

n K |E| —B— Algorithm 2 CPLEX

100 3 2514 2 0.009 11.144
5 2541 4 0.054 10.717
7 2515 3 0.025 10.777
9 2487 8 0.048 10.668

200 3 10 103 1 0.028 94.987
5 10 194 2 0.071 95.790
7 10 199 2 0.043 99.734
9 10 123 4 0.165 94.775

300 3 22 846 1 0.034 386.899
5 22 943 1 0.039 398.339
7 22 933 6 0.225 378.841
9 22 845 4 0.156 400.153

400 3 40 862 1 0.062 ¿10 min
5 40 692 2 0.135 ¿10 min
7 40 779 1 0.094 ¿10 min
9 40 806 2 0.147 ¿10 min

500 3 63 657 1 0.090 ¿10 min
5 63 424 1 0.098 ¿10 min
7 63 676 1 0.136 ¿10 min
9 63 802 3 0.316 ¿10 min

The calculations were performed on a personal computer (Intel Core i7-7700K, 4.2 GHz,
32.0 GB), the algorithm was implemented in Python using NetworkX library for working with
graphs. In Tables 1 and 2 the results of solving randomly generated problems are given. Random
integers from range [1; 10] were chosen for weights of courses and processing times of jobs. Random
vertices of graphs were chosen as extreme jobs of courses in such a way that precedence constraints
between the first and the last vertices of each course were not violated. The running time of the
algorithm and the CPLEX solver was limited to 10 minutes.

Notations n, K, |E|, |B| used in the tables coincide with the notations adopted earlier in the
article, and columns “Algorithm 2” and “CPLEX” indicate the time of solving problems in seconds
by the algorithm proposed in the article and by CPLEX, respectively.
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We can see from Table 1 that running time of the algorithm depends on the cardinality of set B
more than on the total number of jobs. So, the algorithm gives an exact solution to the problems
of high dimension in a fraction of a second, if the number of feasible permutations of extreme jobs
is small. In the case of large value of |B| (see, for example, the problem with n = 100, K = 7),
the running time of the algorithm increases significantly. CPLEX, on the contrary, is insensitive to
changes of |B| and K, but with an increase of n, its running time increases greatly.

In Table 2 results of solving problems with denser graphs are presented. Here, as expected,
the number of feasible permutations of extreme jobs is less, so the algorithm found solutions in all
problems in less than a second.

Thus, the results of the computational experiment confirm the theoretical estimation of the
complexity of the developed algorithm and show that the algorithm can be efficiently applied to
problems with a small set B, which corresponds to the case of either problems with dense precedence
graphs, or problems with a small number of courses, or problems in which the positions of extreme
jobs are fixed relative to each other. In these cases, the algorithm allows us to quickly solve
high-dimensional problems.

6. CONCLUSION

The article considers the single machine problem with precedence constraints, in which it is
necessary to minimize the total weighted duration of courses (some subsets of jobs). The NP-hard-
ness of the problem under consideration is proved. An exact algorithm for its solving is proposed.
This algorithm depends polynomially on the total number of jobs and allows solving problems
efficiently, if there is a small number of options for the relative location of extreme jobs of courses.
The direction of further research may concern a general formulation of the problem, when extreme
jobs of courses are not clearly defined. Resources constrained project scheduling problem with the
considered goal function can also be considered.
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